3.14.1 \(\int \frac {\cos ^4(c+d x) \sin ^3(c+d x)}{a+b \sin (c+d x)} \, dx\) [1301]

3.14.1.1 Optimal result
3.14.1.2 Mathematica [A] (verified)
3.14.1.3 Rubi [A] (verified)
3.14.1.4 Maple [A] (verified)
3.14.1.5 Fricas [A] (verification not implemented)
3.14.1.6 Sympy [F(-1)]
3.14.1.7 Maxima [F(-2)]
3.14.1.8 Giac [B] (verification not implemented)
3.14.1.9 Mupad [B] (verification not implemented)

3.14.1.1 Optimal result

Integrand size = 29, antiderivative size = 282 \[ \int \frac {\cos ^4(c+d x) \sin ^3(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {\left (16 a^6-24 a^4 b^2+6 a^2 b^4+b^6\right ) x}{16 b^7}-\frac {2 a^3 \left (a^2-b^2\right )^{3/2} \arctan \left (\frac {b+a \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{b^7 d}+\frac {a \left (15 a^4-20 a^2 b^2+3 b^4\right ) \cos (c+d x)}{15 b^6 d}-\frac {\left (8 a^4-10 a^2 b^2+b^4\right ) \cos (c+d x) \sin (c+d x)}{16 b^5 d}+\frac {a \left (5 a^2-6 b^2\right ) \cos (c+d x) \sin ^2(c+d x)}{15 b^4 d}-\frac {\left (6 a^2-7 b^2\right ) \cos (c+d x) \sin ^3(c+d x)}{24 b^3 d}+\frac {a \cos (c+d x) \sin ^4(c+d x)}{5 b^2 d}-\frac {\cos (c+d x) \sin ^5(c+d x)}{6 b d} \]

output
1/16*(16*a^6-24*a^4*b^2+6*a^2*b^4+b^6)*x/b^7-2*a^3*(a^2-b^2)^(3/2)*arctan( 
(b+a*tan(1/2*d*x+1/2*c))/(a^2-b^2)^(1/2))/b^7/d+1/15*a*(15*a^4-20*a^2*b^2+ 
3*b^4)*cos(d*x+c)/b^6/d-1/16*(8*a^4-10*a^2*b^2+b^4)*cos(d*x+c)*sin(d*x+c)/ 
b^5/d+1/15*a*(5*a^2-6*b^2)*cos(d*x+c)*sin(d*x+c)^2/b^4/d-1/24*(6*a^2-7*b^2 
)*cos(d*x+c)*sin(d*x+c)^3/b^3/d+1/5*a*cos(d*x+c)*sin(d*x+c)^4/b^2/d-1/6*co 
s(d*x+c)*sin(d*x+c)^5/b/d
 
3.14.1.2 Mathematica [A] (verified)

Time = 1.71 (sec) , antiderivative size = 274, normalized size of antiderivative = 0.97 \[ \int \frac {\cos ^4(c+d x) \sin ^3(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {960 a^6 c-1440 a^4 b^2 c+360 a^2 b^4 c+60 b^6 c+960 a^6 d x-1440 a^4 b^2 d x+360 a^2 b^4 d x+60 b^6 d x-1920 a^3 \left (a^2-b^2\right )^{3/2} \arctan \left (\frac {b+a \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )+120 a b \left (8 a^4-10 a^2 b^2+b^4\right ) \cos (c+d x)+\left (-80 a^3 b^3+60 a b^5\right ) \cos (3 (c+d x))+12 a b^5 \cos (5 (c+d x))-240 a^4 b^2 \sin (2 (c+d x))+240 a^2 b^4 \sin (2 (c+d x))+15 b^6 \sin (2 (c+d x))+30 a^2 b^4 \sin (4 (c+d x))-15 b^6 \sin (4 (c+d x))-5 b^6 \sin (6 (c+d x))}{960 b^7 d} \]

input
Integrate[(Cos[c + d*x]^4*Sin[c + d*x]^3)/(a + b*Sin[c + d*x]),x]
 
output
(960*a^6*c - 1440*a^4*b^2*c + 360*a^2*b^4*c + 60*b^6*c + 960*a^6*d*x - 144 
0*a^4*b^2*d*x + 360*a^2*b^4*d*x + 60*b^6*d*x - 1920*a^3*(a^2 - b^2)^(3/2)* 
ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]] + 120*a*b*(8*a^4 - 10*a^2 
*b^2 + b^4)*Cos[c + d*x] + (-80*a^3*b^3 + 60*a*b^5)*Cos[3*(c + d*x)] + 12* 
a*b^5*Cos[5*(c + d*x)] - 240*a^4*b^2*Sin[2*(c + d*x)] + 240*a^2*b^4*Sin[2* 
(c + d*x)] + 15*b^6*Sin[2*(c + d*x)] + 30*a^2*b^4*Sin[4*(c + d*x)] - 15*b^ 
6*Sin[4*(c + d*x)] - 5*b^6*Sin[6*(c + d*x)])/(960*b^7*d)
 
3.14.1.3 Rubi [A] (verified)

Time = 1.91 (sec) , antiderivative size = 321, normalized size of antiderivative = 1.14, number of steps used = 21, number of rules used = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.690, Rules used = {3042, 3374, 3042, 3528, 27, 3042, 3528, 25, 3042, 3528, 25, 3042, 3502, 27, 3042, 3214, 3042, 3139, 1083, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin ^3(c+d x) \cos ^4(c+d x)}{a+b \sin (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (c+d x)^3 \cos (c+d x)^4}{a+b \sin (c+d x)}dx\)

\(\Big \downarrow \) 3374

\(\displaystyle -\frac {\int \frac {\sin ^3(c+d x) \left (-5 \left (6 a^2-7 b^2\right ) \sin ^2(c+d x)-a b \sin (c+d x)+6 \left (4 a^2-5 b^2\right )\right )}{a+b \sin (c+d x)}dx}{30 b^2}+\frac {a \sin ^4(c+d x) \cos (c+d x)}{5 b^2 d}-\frac {\sin ^5(c+d x) \cos (c+d x)}{6 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {\sin (c+d x)^3 \left (-5 \left (6 a^2-7 b^2\right ) \sin (c+d x)^2-a b \sin (c+d x)+6 \left (4 a^2-5 b^2\right )\right )}{a+b \sin (c+d x)}dx}{30 b^2}+\frac {a \sin ^4(c+d x) \cos (c+d x)}{5 b^2 d}-\frac {\sin ^5(c+d x) \cos (c+d x)}{6 b d}\)

\(\Big \downarrow \) 3528

\(\displaystyle -\frac {\frac {\int -\frac {3 \sin ^2(c+d x) \left (-8 a \left (5 a^2-6 b^2\right ) \sin ^2(c+d x)-b \left (2 a^2-5 b^2\right ) \sin (c+d x)+5 a \left (6 a^2-7 b^2\right )\right )}{a+b \sin (c+d x)}dx}{4 b}+\frac {5 \left (6 a^2-7 b^2\right ) \sin ^3(c+d x) \cos (c+d x)}{4 b d}}{30 b^2}+\frac {a \sin ^4(c+d x) \cos (c+d x)}{5 b^2 d}-\frac {\sin ^5(c+d x) \cos (c+d x)}{6 b d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {5 \left (6 a^2-7 b^2\right ) \sin ^3(c+d x) \cos (c+d x)}{4 b d}-\frac {3 \int \frac {\sin ^2(c+d x) \left (-8 a \left (5 a^2-6 b^2\right ) \sin ^2(c+d x)-b \left (2 a^2-5 b^2\right ) \sin (c+d x)+5 a \left (6 a^2-7 b^2\right )\right )}{a+b \sin (c+d x)}dx}{4 b}}{30 b^2}+\frac {a \sin ^4(c+d x) \cos (c+d x)}{5 b^2 d}-\frac {\sin ^5(c+d x) \cos (c+d x)}{6 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {5 \left (6 a^2-7 b^2\right ) \sin ^3(c+d x) \cos (c+d x)}{4 b d}-\frac {3 \int \frac {\sin (c+d x)^2 \left (-8 a \left (5 a^2-6 b^2\right ) \sin (c+d x)^2-b \left (2 a^2-5 b^2\right ) \sin (c+d x)+5 a \left (6 a^2-7 b^2\right )\right )}{a+b \sin (c+d x)}dx}{4 b}}{30 b^2}+\frac {a \sin ^4(c+d x) \cos (c+d x)}{5 b^2 d}-\frac {\sin ^5(c+d x) \cos (c+d x)}{6 b d}\)

\(\Big \downarrow \) 3528

\(\displaystyle -\frac {\frac {5 \left (6 a^2-7 b^2\right ) \sin ^3(c+d x) \cos (c+d x)}{4 b d}-\frac {3 \left (\frac {\int -\frac {\sin (c+d x) \left (16 \left (5 a^2-6 b^2\right ) a^2-b \left (10 a^2-9 b^2\right ) \sin (c+d x) a-15 \left (8 a^4-10 b^2 a^2+b^4\right ) \sin ^2(c+d x)\right )}{a+b \sin (c+d x)}dx}{3 b}+\frac {8 a \left (5 a^2-6 b^2\right ) \sin ^2(c+d x) \cos (c+d x)}{3 b d}\right )}{4 b}}{30 b^2}+\frac {a \sin ^4(c+d x) \cos (c+d x)}{5 b^2 d}-\frac {\sin ^5(c+d x) \cos (c+d x)}{6 b d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\frac {5 \left (6 a^2-7 b^2\right ) \sin ^3(c+d x) \cos (c+d x)}{4 b d}-\frac {3 \left (\frac {8 a \left (5 a^2-6 b^2\right ) \sin ^2(c+d x) \cos (c+d x)}{3 b d}-\frac {\int \frac {\sin (c+d x) \left (16 \left (5 a^2-6 b^2\right ) a^2-b \left (10 a^2-9 b^2\right ) \sin (c+d x) a-15 \left (8 a^4-10 b^2 a^2+b^4\right ) \sin ^2(c+d x)\right )}{a+b \sin (c+d x)}dx}{3 b}\right )}{4 b}}{30 b^2}+\frac {a \sin ^4(c+d x) \cos (c+d x)}{5 b^2 d}-\frac {\sin ^5(c+d x) \cos (c+d x)}{6 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {5 \left (6 a^2-7 b^2\right ) \sin ^3(c+d x) \cos (c+d x)}{4 b d}-\frac {3 \left (\frac {8 a \left (5 a^2-6 b^2\right ) \sin ^2(c+d x) \cos (c+d x)}{3 b d}-\frac {\int \frac {\sin (c+d x) \left (16 \left (5 a^2-6 b^2\right ) a^2-b \left (10 a^2-9 b^2\right ) \sin (c+d x) a-15 \left (8 a^4-10 b^2 a^2+b^4\right ) \sin (c+d x)^2\right )}{a+b \sin (c+d x)}dx}{3 b}\right )}{4 b}}{30 b^2}+\frac {a \sin ^4(c+d x) \cos (c+d x)}{5 b^2 d}-\frac {\sin ^5(c+d x) \cos (c+d x)}{6 b d}\)

\(\Big \downarrow \) 3528

\(\displaystyle -\frac {\frac {5 \left (6 a^2-7 b^2\right ) \sin ^3(c+d x) \cos (c+d x)}{4 b d}-\frac {3 \left (\frac {8 a \left (5 a^2-6 b^2\right ) \sin ^2(c+d x) \cos (c+d x)}{3 b d}-\frac {\frac {\int -\frac {-16 a \left (15 a^4-20 b^2 a^2+3 b^4\right ) \sin ^2(c+d x)-b \left (40 a^4-42 b^2 a^2-15 b^4\right ) \sin (c+d x)+15 a \left (8 a^4-10 b^2 a^2+b^4\right )}{a+b \sin (c+d x)}dx}{2 b}+\frac {15 \left (8 a^4-10 a^2 b^2+b^4\right ) \sin (c+d x) \cos (c+d x)}{2 b d}}{3 b}\right )}{4 b}}{30 b^2}+\frac {a \sin ^4(c+d x) \cos (c+d x)}{5 b^2 d}-\frac {\sin ^5(c+d x) \cos (c+d x)}{6 b d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\frac {5 \left (6 a^2-7 b^2\right ) \sin ^3(c+d x) \cos (c+d x)}{4 b d}-\frac {3 \left (\frac {8 a \left (5 a^2-6 b^2\right ) \sin ^2(c+d x) \cos (c+d x)}{3 b d}-\frac {\frac {15 \left (8 a^4-10 a^2 b^2+b^4\right ) \sin (c+d x) \cos (c+d x)}{2 b d}-\frac {\int \frac {-16 a \left (15 a^4-20 b^2 a^2+3 b^4\right ) \sin ^2(c+d x)-b \left (40 a^4-42 b^2 a^2-15 b^4\right ) \sin (c+d x)+15 a \left (8 a^4-10 b^2 a^2+b^4\right )}{a+b \sin (c+d x)}dx}{2 b}}{3 b}\right )}{4 b}}{30 b^2}+\frac {a \sin ^4(c+d x) \cos (c+d x)}{5 b^2 d}-\frac {\sin ^5(c+d x) \cos (c+d x)}{6 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {5 \left (6 a^2-7 b^2\right ) \sin ^3(c+d x) \cos (c+d x)}{4 b d}-\frac {3 \left (\frac {8 a \left (5 a^2-6 b^2\right ) \sin ^2(c+d x) \cos (c+d x)}{3 b d}-\frac {\frac {15 \left (8 a^4-10 a^2 b^2+b^4\right ) \sin (c+d x) \cos (c+d x)}{2 b d}-\frac {\int \frac {-16 a \left (15 a^4-20 b^2 a^2+3 b^4\right ) \sin (c+d x)^2-b \left (40 a^4-42 b^2 a^2-15 b^4\right ) \sin (c+d x)+15 a \left (8 a^4-10 b^2 a^2+b^4\right )}{a+b \sin (c+d x)}dx}{2 b}}{3 b}\right )}{4 b}}{30 b^2}+\frac {a \sin ^4(c+d x) \cos (c+d x)}{5 b^2 d}-\frac {\sin ^5(c+d x) \cos (c+d x)}{6 b d}\)

\(\Big \downarrow \) 3502

\(\displaystyle -\frac {\frac {5 \left (6 a^2-7 b^2\right ) \sin ^3(c+d x) \cos (c+d x)}{4 b d}-\frac {3 \left (\frac {8 a \left (5 a^2-6 b^2\right ) \sin ^2(c+d x) \cos (c+d x)}{3 b d}-\frac {\frac {15 \left (8 a^4-10 a^2 b^2+b^4\right ) \sin (c+d x) \cos (c+d x)}{2 b d}-\frac {\frac {\int \frac {15 \left (a b \left (8 a^4-10 b^2 a^2+b^4\right )+\left (16 a^6-24 b^2 a^4+6 b^4 a^2+b^6\right ) \sin (c+d x)\right )}{a+b \sin (c+d x)}dx}{b}+\frac {16 a \left (15 a^4-20 a^2 b^2+3 b^4\right ) \cos (c+d x)}{b d}}{2 b}}{3 b}\right )}{4 b}}{30 b^2}+\frac {a \sin ^4(c+d x) \cos (c+d x)}{5 b^2 d}-\frac {\sin ^5(c+d x) \cos (c+d x)}{6 b d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {5 \left (6 a^2-7 b^2\right ) \sin ^3(c+d x) \cos (c+d x)}{4 b d}-\frac {3 \left (\frac {8 a \left (5 a^2-6 b^2\right ) \sin ^2(c+d x) \cos (c+d x)}{3 b d}-\frac {\frac {15 \left (8 a^4-10 a^2 b^2+b^4\right ) \sin (c+d x) \cos (c+d x)}{2 b d}-\frac {\frac {15 \int \frac {a b \left (8 a^4-10 b^2 a^2+b^4\right )+\left (16 a^6-24 b^2 a^4+6 b^4 a^2+b^6\right ) \sin (c+d x)}{a+b \sin (c+d x)}dx}{b}+\frac {16 a \left (15 a^4-20 a^2 b^2+3 b^4\right ) \cos (c+d x)}{b d}}{2 b}}{3 b}\right )}{4 b}}{30 b^2}+\frac {a \sin ^4(c+d x) \cos (c+d x)}{5 b^2 d}-\frac {\sin ^5(c+d x) \cos (c+d x)}{6 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {5 \left (6 a^2-7 b^2\right ) \sin ^3(c+d x) \cos (c+d x)}{4 b d}-\frac {3 \left (\frac {8 a \left (5 a^2-6 b^2\right ) \sin ^2(c+d x) \cos (c+d x)}{3 b d}-\frac {\frac {15 \left (8 a^4-10 a^2 b^2+b^4\right ) \sin (c+d x) \cos (c+d x)}{2 b d}-\frac {\frac {15 \int \frac {a b \left (8 a^4-10 b^2 a^2+b^4\right )+\left (16 a^6-24 b^2 a^4+6 b^4 a^2+b^6\right ) \sin (c+d x)}{a+b \sin (c+d x)}dx}{b}+\frac {16 a \left (15 a^4-20 a^2 b^2+3 b^4\right ) \cos (c+d x)}{b d}}{2 b}}{3 b}\right )}{4 b}}{30 b^2}+\frac {a \sin ^4(c+d x) \cos (c+d x)}{5 b^2 d}-\frac {\sin ^5(c+d x) \cos (c+d x)}{6 b d}\)

\(\Big \downarrow \) 3214

\(\displaystyle -\frac {\frac {5 \left (6 a^2-7 b^2\right ) \sin ^3(c+d x) \cos (c+d x)}{4 b d}-\frac {3 \left (\frac {8 a \left (5 a^2-6 b^2\right ) \sin ^2(c+d x) \cos (c+d x)}{3 b d}-\frac {\frac {15 \left (8 a^4-10 a^2 b^2+b^4\right ) \sin (c+d x) \cos (c+d x)}{2 b d}-\frac {\frac {15 \left (\frac {x \left (16 a^6-24 a^4 b^2+6 a^2 b^4+b^6\right )}{b}-\frac {16 a^3 \left (a^2-b^2\right )^2 \int \frac {1}{a+b \sin (c+d x)}dx}{b}\right )}{b}+\frac {16 a \left (15 a^4-20 a^2 b^2+3 b^4\right ) \cos (c+d x)}{b d}}{2 b}}{3 b}\right )}{4 b}}{30 b^2}+\frac {a \sin ^4(c+d x) \cos (c+d x)}{5 b^2 d}-\frac {\sin ^5(c+d x) \cos (c+d x)}{6 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {5 \left (6 a^2-7 b^2\right ) \sin ^3(c+d x) \cos (c+d x)}{4 b d}-\frac {3 \left (\frac {8 a \left (5 a^2-6 b^2\right ) \sin ^2(c+d x) \cos (c+d x)}{3 b d}-\frac {\frac {15 \left (8 a^4-10 a^2 b^2+b^4\right ) \sin (c+d x) \cos (c+d x)}{2 b d}-\frac {\frac {15 \left (\frac {x \left (16 a^6-24 a^4 b^2+6 a^2 b^4+b^6\right )}{b}-\frac {16 a^3 \left (a^2-b^2\right )^2 \int \frac {1}{a+b \sin (c+d x)}dx}{b}\right )}{b}+\frac {16 a \left (15 a^4-20 a^2 b^2+3 b^4\right ) \cos (c+d x)}{b d}}{2 b}}{3 b}\right )}{4 b}}{30 b^2}+\frac {a \sin ^4(c+d x) \cos (c+d x)}{5 b^2 d}-\frac {\sin ^5(c+d x) \cos (c+d x)}{6 b d}\)

\(\Big \downarrow \) 3139

\(\displaystyle -\frac {\frac {5 \left (6 a^2-7 b^2\right ) \sin ^3(c+d x) \cos (c+d x)}{4 b d}-\frac {3 \left (\frac {8 a \left (5 a^2-6 b^2\right ) \sin ^2(c+d x) \cos (c+d x)}{3 b d}-\frac {\frac {15 \left (8 a^4-10 a^2 b^2+b^4\right ) \sin (c+d x) \cos (c+d x)}{2 b d}-\frac {\frac {15 \left (\frac {x \left (16 a^6-24 a^4 b^2+6 a^2 b^4+b^6\right )}{b}-\frac {32 a^3 \left (a^2-b^2\right )^2 \int \frac {1}{a \tan ^2\left (\frac {1}{2} (c+d x)\right )+2 b \tan \left (\frac {1}{2} (c+d x)\right )+a}d\tan \left (\frac {1}{2} (c+d x)\right )}{b d}\right )}{b}+\frac {16 a \left (15 a^4-20 a^2 b^2+3 b^4\right ) \cos (c+d x)}{b d}}{2 b}}{3 b}\right )}{4 b}}{30 b^2}+\frac {a \sin ^4(c+d x) \cos (c+d x)}{5 b^2 d}-\frac {\sin ^5(c+d x) \cos (c+d x)}{6 b d}\)

\(\Big \downarrow \) 1083

\(\displaystyle -\frac {\frac {5 \left (6 a^2-7 b^2\right ) \sin ^3(c+d x) \cos (c+d x)}{4 b d}-\frac {3 \left (\frac {8 a \left (5 a^2-6 b^2\right ) \sin ^2(c+d x) \cos (c+d x)}{3 b d}-\frac {\frac {15 \left (8 a^4-10 a^2 b^2+b^4\right ) \sin (c+d x) \cos (c+d x)}{2 b d}-\frac {\frac {15 \left (\frac {64 a^3 \left (a^2-b^2\right )^2 \int \frac {1}{-\left (2 b+2 a \tan \left (\frac {1}{2} (c+d x)\right )\right )^2-4 \left (a^2-b^2\right )}d\left (2 b+2 a \tan \left (\frac {1}{2} (c+d x)\right )\right )}{b d}+\frac {x \left (16 a^6-24 a^4 b^2+6 a^2 b^4+b^6\right )}{b}\right )}{b}+\frac {16 a \left (15 a^4-20 a^2 b^2+3 b^4\right ) \cos (c+d x)}{b d}}{2 b}}{3 b}\right )}{4 b}}{30 b^2}+\frac {a \sin ^4(c+d x) \cos (c+d x)}{5 b^2 d}-\frac {\sin ^5(c+d x) \cos (c+d x)}{6 b d}\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {\frac {5 \left (6 a^2-7 b^2\right ) \sin ^3(c+d x) \cos (c+d x)}{4 b d}-\frac {3 \left (\frac {8 a \left (5 a^2-6 b^2\right ) \sin ^2(c+d x) \cos (c+d x)}{3 b d}-\frac {\frac {15 \left (8 a^4-10 a^2 b^2+b^4\right ) \sin (c+d x) \cos (c+d x)}{2 b d}-\frac {\frac {16 a \left (15 a^4-20 a^2 b^2+3 b^4\right ) \cos (c+d x)}{b d}+\frac {15 \left (\frac {x \left (16 a^6-24 a^4 b^2+6 a^2 b^4+b^6\right )}{b}-\frac {32 a^3 \left (a^2-b^2\right )^{3/2} \arctan \left (\frac {2 a \tan \left (\frac {1}{2} (c+d x)\right )+2 b}{2 \sqrt {a^2-b^2}}\right )}{b d}\right )}{b}}{2 b}}{3 b}\right )}{4 b}}{30 b^2}+\frac {a \sin ^4(c+d x) \cos (c+d x)}{5 b^2 d}-\frac {\sin ^5(c+d x) \cos (c+d x)}{6 b d}\)

input
Int[(Cos[c + d*x]^4*Sin[c + d*x]^3)/(a + b*Sin[c + d*x]),x]
 
output
(a*Cos[c + d*x]*Sin[c + d*x]^4)/(5*b^2*d) - (Cos[c + d*x]*Sin[c + d*x]^5)/ 
(6*b*d) - ((5*(6*a^2 - 7*b^2)*Cos[c + d*x]*Sin[c + d*x]^3)/(4*b*d) - (3*(( 
8*a*(5*a^2 - 6*b^2)*Cos[c + d*x]*Sin[c + d*x]^2)/(3*b*d) - (-1/2*((15*(((1 
6*a^6 - 24*a^4*b^2 + 6*a^2*b^4 + b^6)*x)/b - (32*a^3*(a^2 - b^2)^(3/2)*Arc 
Tan[(2*b + 2*a*Tan[(c + d*x)/2])/(2*Sqrt[a^2 - b^2])])/(b*d)))/b + (16*a*( 
15*a^4 - 20*a^2*b^2 + 3*b^4)*Cos[c + d*x])/(b*d))/b + (15*(8*a^4 - 10*a^2* 
b^2 + b^4)*Cos[c + d*x]*Sin[c + d*x])/(2*b*d))/(3*b)))/(4*b))/(30*b^2)
 

3.14.1.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3139
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = Fre 
eFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + 2*b*e*x + a 
*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] && NeQ 
[a^2 - b^2, 0]
 

rule 3214
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_. 
)*(x_)]), x_Symbol] :> Simp[b*(x/d), x] - Simp[(b*c - a*d)/d   Int[1/(c + d 
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
 

rule 3374
Int[cos[(e_.) + (f_.)*(x_)]^4*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + 
(b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[a*(n + 3)*Cos[e + f* 
x]*(d*Sin[e + f*x])^(n + 1)*((a + b*Sin[e + f*x])^(m + 1)/(b^2*d*f*(m + n + 
 3)*(m + n + 4))), x] + (-Simp[Cos[e + f*x]*(d*Sin[e + f*x])^(n + 2)*((a + 
b*Sin[e + f*x])^(m + 1)/(b*d^2*f*(m + n + 4))), x] - Simp[1/(b^2*(m + n + 3 
)*(m + n + 4))   Int[(d*Sin[e + f*x])^n*(a + b*Sin[e + f*x])^m*Simp[a^2*(n 
+ 1)*(n + 3) - b^2*(m + n + 3)*(m + n + 4) + a*b*m*Sin[e + f*x] - (a^2*(n + 
 2)*(n + 3) - b^2*(m + n + 3)*(m + n + 5))*Sin[e + f*x]^2, x], x], x]) /; F 
reeQ[{a, b, d, e, f, m, n}, x] && NeQ[a^2 - b^2, 0] && (IGtQ[m, 0] || Integ 
ersQ[2*m, 2*n]) &&  !m < -1 &&  !LtQ[n, -1] && NeQ[m + n + 3, 0] && NeQ[m + 
 n + 4, 0]
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 

rule 3528
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_ 
.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e + f*x 
])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 2))), x] + Simp[1/(d*(m + 
n + 2))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A* 
d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (d*(A*b + a*B)*(m + n + 2) - C*(a 
*c - b*d*(m + n + 1)))*Sin[e + f*x] + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + 
 n + 2))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n} 
, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[ 
m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))
 
3.14.1.4 Maple [A] (verified)

Time = 1.05 (sec) , antiderivative size = 512, normalized size of antiderivative = 1.82

method result size
derivativedivides \(\frac {-\frac {2 a^{3} \left (a^{4}-2 a^{2} b^{2}+b^{4}\right ) \arctan \left (\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{b^{7} \sqrt {a^{2}-b^{2}}}+\frac {\frac {2 \left (\left (\frac {1}{2} a^{4} b^{2}-\frac {5}{8} a^{2} b^{4}+\frac {1}{16} b^{6}\right ) \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (a^{5} b -2 a^{3} b^{3}+a \,b^{5}\right ) \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (\frac {3}{2} a^{4} b^{2}-\frac {7}{8} a^{2} b^{4}-\frac {47}{48} b^{6}\right ) \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (5 a^{5} b -8 a^{3} b^{3}+a \,b^{5}\right ) \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (a^{4} b^{2}-\frac {1}{4} a^{2} b^{4}+\frac {13}{8} b^{6}\right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (10 a^{5} b -\frac {40}{3} a^{3} b^{3}+2 a \,b^{5}\right ) \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-a^{4} b^{2}+\frac {1}{4} a^{2} b^{4}-\frac {13}{8} b^{6}\right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (10 a^{5} b -12 a^{3} b^{3}+2 a \,b^{5}\right ) \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-\frac {3}{2} a^{4} b^{2}+\frac {7}{8} a^{2} b^{4}+\frac {47}{48} b^{6}\right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (5 a^{5} b -6 a^{3} b^{3}+\frac {1}{5} a \,b^{5}\right ) \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-\frac {1}{2} a^{4} b^{2}+\frac {5}{8} a^{2} b^{4}-\frac {1}{16} b^{6}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+a^{5} b -\frac {4 a^{3} b^{3}}{3}+\frac {a \,b^{5}}{5}\right )}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{6}}+\frac {\left (16 a^{6}-24 a^{4} b^{2}+6 a^{2} b^{4}+b^{6}\right ) \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}}{b^{7}}}{d}\) \(512\)
default \(\frac {-\frac {2 a^{3} \left (a^{4}-2 a^{2} b^{2}+b^{4}\right ) \arctan \left (\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{b^{7} \sqrt {a^{2}-b^{2}}}+\frac {\frac {2 \left (\left (\frac {1}{2} a^{4} b^{2}-\frac {5}{8} a^{2} b^{4}+\frac {1}{16} b^{6}\right ) \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (a^{5} b -2 a^{3} b^{3}+a \,b^{5}\right ) \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (\frac {3}{2} a^{4} b^{2}-\frac {7}{8} a^{2} b^{4}-\frac {47}{48} b^{6}\right ) \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (5 a^{5} b -8 a^{3} b^{3}+a \,b^{5}\right ) \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (a^{4} b^{2}-\frac {1}{4} a^{2} b^{4}+\frac {13}{8} b^{6}\right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (10 a^{5} b -\frac {40}{3} a^{3} b^{3}+2 a \,b^{5}\right ) \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-a^{4} b^{2}+\frac {1}{4} a^{2} b^{4}-\frac {13}{8} b^{6}\right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (10 a^{5} b -12 a^{3} b^{3}+2 a \,b^{5}\right ) \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-\frac {3}{2} a^{4} b^{2}+\frac {7}{8} a^{2} b^{4}+\frac {47}{48} b^{6}\right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (5 a^{5} b -6 a^{3} b^{3}+\frac {1}{5} a \,b^{5}\right ) \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-\frac {1}{2} a^{4} b^{2}+\frac {5}{8} a^{2} b^{4}-\frac {1}{16} b^{6}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+a^{5} b -\frac {4 a^{3} b^{3}}{3}+\frac {a \,b^{5}}{5}\right )}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{6}}+\frac {\left (16 a^{6}-24 a^{4} b^{2}+6 a^{2} b^{4}+b^{6}\right ) \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}}{b^{7}}}{d}\) \(512\)
risch \(\frac {x \,a^{6}}{b^{7}}-\frac {3 x \,a^{4}}{2 b^{5}}+\frac {3 x \,a^{2}}{8 b^{3}}+\frac {x}{16 b}+\frac {a^{5} {\mathrm e}^{i \left (d x +c \right )}}{2 b^{6} d}-\frac {5 a^{3} {\mathrm e}^{i \left (d x +c \right )}}{8 b^{4} d}+\frac {a \,{\mathrm e}^{i \left (d x +c \right )}}{16 d \,b^{2}}+\frac {a^{5} {\mathrm e}^{-i \left (d x +c \right )}}{2 b^{6} d}-\frac {5 a^{3} {\mathrm e}^{-i \left (d x +c \right )}}{8 b^{4} d}+\frac {a \,{\mathrm e}^{-i \left (d x +c \right )}}{16 b^{2} d}+\frac {i \sqrt {a^{2}-b^{2}}\, a^{5} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \left (\sqrt {a^{2}-b^{2}}\, a -a^{2}+b^{2}\right )}{b \sqrt {a^{2}-b^{2}}}\right )}{d \,b^{7}}-\frac {i \sqrt {a^{2}-b^{2}}\, a^{5} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \left (\sqrt {a^{2}-b^{2}}\, a +a^{2}-b^{2}\right )}{b \sqrt {a^{2}-b^{2}}}\right )}{d \,b^{7}}-\frac {i \sqrt {a^{2}-b^{2}}\, a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \left (\sqrt {a^{2}-b^{2}}\, a -a^{2}+b^{2}\right )}{b \sqrt {a^{2}-b^{2}}}\right )}{d \,b^{5}}+\frac {i \sqrt {a^{2}-b^{2}}\, a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \left (\sqrt {a^{2}-b^{2}}\, a +a^{2}-b^{2}\right )}{b \sqrt {a^{2}-b^{2}}}\right )}{d \,b^{5}}-\frac {\sin \left (6 d x +6 c \right )}{192 b d}+\frac {a \cos \left (5 d x +5 c \right )}{80 b^{2} d}+\frac {\sin \left (4 d x +4 c \right ) a^{2}}{32 b^{3} d}-\frac {\sin \left (4 d x +4 c \right )}{64 b d}-\frac {a^{3} \cos \left (3 d x +3 c \right )}{12 b^{4} d}+\frac {a \cos \left (3 d x +3 c \right )}{16 b^{2} d}-\frac {\sin \left (2 d x +2 c \right ) a^{4}}{4 b^{5} d}+\frac {\sin \left (2 d x +2 c \right ) a^{2}}{4 b^{3} d}+\frac {\sin \left (2 d x +2 c \right )}{64 b d}\) \(609\)

input
int(cos(d*x+c)^4*sin(d*x+c)^3/(a+b*sin(d*x+c)),x,method=_RETURNVERBOSE)
 
output
1/d*(-2*a^3*(a^4-2*a^2*b^2+b^4)/b^7/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/ 
2*d*x+1/2*c)+2*b)/(a^2-b^2)^(1/2))+2/b^7*(((1/2*a^4*b^2-5/8*a^2*b^4+1/16*b 
^6)*tan(1/2*d*x+1/2*c)^11+(a^5*b-2*a^3*b^3+a*b^5)*tan(1/2*d*x+1/2*c)^10+(3 
/2*a^4*b^2-7/8*a^2*b^4-47/48*b^6)*tan(1/2*d*x+1/2*c)^9+(5*a^5*b-8*a^3*b^3+ 
a*b^5)*tan(1/2*d*x+1/2*c)^8+(a^4*b^2-1/4*a^2*b^4+13/8*b^6)*tan(1/2*d*x+1/2 
*c)^7+(10*a^5*b-40/3*a^3*b^3+2*a*b^5)*tan(1/2*d*x+1/2*c)^6+(-a^4*b^2+1/4*a 
^2*b^4-13/8*b^6)*tan(1/2*d*x+1/2*c)^5+(10*a^5*b-12*a^3*b^3+2*a*b^5)*tan(1/ 
2*d*x+1/2*c)^4+(-3/2*a^4*b^2+7/8*a^2*b^4+47/48*b^6)*tan(1/2*d*x+1/2*c)^3+( 
5*a^5*b-6*a^3*b^3+1/5*a*b^5)*tan(1/2*d*x+1/2*c)^2+(-1/2*a^4*b^2+5/8*a^2*b^ 
4-1/16*b^6)*tan(1/2*d*x+1/2*c)+a^5*b-4/3*a^3*b^3+1/5*a*b^5)/(1+tan(1/2*d*x 
+1/2*c)^2)^6+1/16*(16*a^6-24*a^4*b^2+6*a^2*b^4+b^6)*arctan(tan(1/2*d*x+1/2 
*c))))
 
3.14.1.5 Fricas [A] (verification not implemented)

Time = 0.47 (sec) , antiderivative size = 526, normalized size of antiderivative = 1.87 \[ \int \frac {\cos ^4(c+d x) \sin ^3(c+d x)}{a+b \sin (c+d x)} \, dx=\left [\frac {48 \, a b^{5} \cos \left (d x + c\right )^{5} - 80 \, a^{3} b^{3} \cos \left (d x + c\right )^{3} + 15 \, {\left (16 \, a^{6} - 24 \, a^{4} b^{2} + 6 \, a^{2} b^{4} + b^{6}\right )} d x - 120 \, {\left (a^{5} - a^{3} b^{2}\right )} \sqrt {-a^{2} + b^{2}} \log \left (-\frac {{\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2} - 2 \, {\left (a \cos \left (d x + c\right ) \sin \left (d x + c\right ) + b \cos \left (d x + c\right )\right )} \sqrt {-a^{2} + b^{2}}}{b^{2} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2}}\right ) + 240 \, {\left (a^{5} b - a^{3} b^{3}\right )} \cos \left (d x + c\right ) - 5 \, {\left (8 \, b^{6} \cos \left (d x + c\right )^{5} - 2 \, {\left (6 \, a^{2} b^{4} + b^{6}\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (8 \, a^{4} b^{2} - 6 \, a^{2} b^{4} - b^{6}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{240 \, b^{7} d}, \frac {48 \, a b^{5} \cos \left (d x + c\right )^{5} - 80 \, a^{3} b^{3} \cos \left (d x + c\right )^{3} + 15 \, {\left (16 \, a^{6} - 24 \, a^{4} b^{2} + 6 \, a^{2} b^{4} + b^{6}\right )} d x + 240 \, {\left (a^{5} - a^{3} b^{2}\right )} \sqrt {a^{2} - b^{2}} \arctan \left (-\frac {a \sin \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \cos \left (d x + c\right )}\right ) + 240 \, {\left (a^{5} b - a^{3} b^{3}\right )} \cos \left (d x + c\right ) - 5 \, {\left (8 \, b^{6} \cos \left (d x + c\right )^{5} - 2 \, {\left (6 \, a^{2} b^{4} + b^{6}\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (8 \, a^{4} b^{2} - 6 \, a^{2} b^{4} - b^{6}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{240 \, b^{7} d}\right ] \]

input
integrate(cos(d*x+c)^4*sin(d*x+c)^3/(a+b*sin(d*x+c)),x, algorithm="fricas" 
)
 
output
[1/240*(48*a*b^5*cos(d*x + c)^5 - 80*a^3*b^3*cos(d*x + c)^3 + 15*(16*a^6 - 
 24*a^4*b^2 + 6*a^2*b^4 + b^6)*d*x - 120*(a^5 - a^3*b^2)*sqrt(-a^2 + b^2)* 
log(-((2*a^2 - b^2)*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2 - 2*(a 
*cos(d*x + c)*sin(d*x + c) + b*cos(d*x + c))*sqrt(-a^2 + b^2))/(b^2*cos(d* 
x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2)) + 240*(a^5*b - a^3*b^3)*cos(d* 
x + c) - 5*(8*b^6*cos(d*x + c)^5 - 2*(6*a^2*b^4 + b^6)*cos(d*x + c)^3 + 3* 
(8*a^4*b^2 - 6*a^2*b^4 - b^6)*cos(d*x + c))*sin(d*x + c))/(b^7*d), 1/240*( 
48*a*b^5*cos(d*x + c)^5 - 80*a^3*b^3*cos(d*x + c)^3 + 15*(16*a^6 - 24*a^4* 
b^2 + 6*a^2*b^4 + b^6)*d*x + 240*(a^5 - a^3*b^2)*sqrt(a^2 - b^2)*arctan(-( 
a*sin(d*x + c) + b)/(sqrt(a^2 - b^2)*cos(d*x + c))) + 240*(a^5*b - a^3*b^3 
)*cos(d*x + c) - 5*(8*b^6*cos(d*x + c)^5 - 2*(6*a^2*b^4 + b^6)*cos(d*x + c 
)^3 + 3*(8*a^4*b^2 - 6*a^2*b^4 - b^6)*cos(d*x + c))*sin(d*x + c))/(b^7*d)]
 
3.14.1.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^4(c+d x) \sin ^3(c+d x)}{a+b \sin (c+d x)} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**4*sin(d*x+c)**3/(a+b*sin(d*x+c)),x)
 
output
Timed out
 
3.14.1.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\cos ^4(c+d x) \sin ^3(c+d x)}{a+b \sin (c+d x)} \, dx=\text {Exception raised: ValueError} \]

input
integrate(cos(d*x+c)^4*sin(d*x+c)^3/(a+b*sin(d*x+c)),x, algorithm="maxima" 
)
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?` f 
or more de
 
3.14.1.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 726 vs. \(2 (263) = 526\).

Time = 0.37 (sec) , antiderivative size = 726, normalized size of antiderivative = 2.57 \[ \int \frac {\cos ^4(c+d x) \sin ^3(c+d x)}{a+b \sin (c+d x)} \, dx=\text {Too large to display} \]

input
integrate(cos(d*x+c)^4*sin(d*x+c)^3/(a+b*sin(d*x+c)),x, algorithm="giac")
 
output
1/240*(15*(16*a^6 - 24*a^4*b^2 + 6*a^2*b^4 + b^6)*(d*x + c)/b^7 - 480*(a^7 
 - 2*a^5*b^2 + a^3*b^4)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(a) + arctan( 
(a*tan(1/2*d*x + 1/2*c) + b)/sqrt(a^2 - b^2)))/(sqrt(a^2 - b^2)*b^7) + 2*( 
120*a^4*b*tan(1/2*d*x + 1/2*c)^11 - 150*a^2*b^3*tan(1/2*d*x + 1/2*c)^11 + 
15*b^5*tan(1/2*d*x + 1/2*c)^11 + 240*a^5*tan(1/2*d*x + 1/2*c)^10 - 480*a^3 
*b^2*tan(1/2*d*x + 1/2*c)^10 + 240*a*b^4*tan(1/2*d*x + 1/2*c)^10 + 360*a^4 
*b*tan(1/2*d*x + 1/2*c)^9 - 210*a^2*b^3*tan(1/2*d*x + 1/2*c)^9 - 235*b^5*t 
an(1/2*d*x + 1/2*c)^9 + 1200*a^5*tan(1/2*d*x + 1/2*c)^8 - 1920*a^3*b^2*tan 
(1/2*d*x + 1/2*c)^8 + 240*a*b^4*tan(1/2*d*x + 1/2*c)^8 + 240*a^4*b*tan(1/2 
*d*x + 1/2*c)^7 - 60*a^2*b^3*tan(1/2*d*x + 1/2*c)^7 + 390*b^5*tan(1/2*d*x 
+ 1/2*c)^7 + 2400*a^5*tan(1/2*d*x + 1/2*c)^6 - 3200*a^3*b^2*tan(1/2*d*x + 
1/2*c)^6 + 480*a*b^4*tan(1/2*d*x + 1/2*c)^6 - 240*a^4*b*tan(1/2*d*x + 1/2* 
c)^5 + 60*a^2*b^3*tan(1/2*d*x + 1/2*c)^5 - 390*b^5*tan(1/2*d*x + 1/2*c)^5 
+ 2400*a^5*tan(1/2*d*x + 1/2*c)^4 - 2880*a^3*b^2*tan(1/2*d*x + 1/2*c)^4 + 
480*a*b^4*tan(1/2*d*x + 1/2*c)^4 - 360*a^4*b*tan(1/2*d*x + 1/2*c)^3 + 210* 
a^2*b^3*tan(1/2*d*x + 1/2*c)^3 + 235*b^5*tan(1/2*d*x + 1/2*c)^3 + 1200*a^5 
*tan(1/2*d*x + 1/2*c)^2 - 1440*a^3*b^2*tan(1/2*d*x + 1/2*c)^2 + 48*a*b^4*t 
an(1/2*d*x + 1/2*c)^2 - 120*a^4*b*tan(1/2*d*x + 1/2*c) + 150*a^2*b^3*tan(1 
/2*d*x + 1/2*c) - 15*b^5*tan(1/2*d*x + 1/2*c) + 240*a^5 - 320*a^3*b^2 + 48 
*a*b^4)/((tan(1/2*d*x + 1/2*c)^2 + 1)^6*b^6))/d
 
3.14.1.9 Mupad [B] (verification not implemented)

Time = 14.70 (sec) , antiderivative size = 600, normalized size of antiderivative = 2.13 \[ \int \frac {\cos ^4(c+d x) \sin ^3(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{8\,b\,d}+\frac {\sin \left (2\,c+2\,d\,x\right )}{64\,b\,d}-\frac {\sin \left (4\,c+4\,d\,x\right )}{64\,b\,d}-\frac {\sin \left (6\,c+6\,d\,x\right )}{192\,b\,d}+\frac {a\,\cos \left (3\,c+3\,d\,x\right )}{16\,b^2\,d}+\frac {a\,\cos \left (5\,c+5\,d\,x\right )}{80\,b^2\,d}-\frac {5\,a^3\,\cos \left (c+d\,x\right )}{4\,b^4\,d}+\frac {a^5\,\cos \left (c+d\,x\right )}{b^6\,d}+\frac {3\,a^2\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{4\,b^3\,d}-\frac {3\,a^4\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{b^5\,d}+\frac {2\,a^6\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{b^7\,d}-\frac {a^3\,\cos \left (3\,c+3\,d\,x\right )}{12\,b^4\,d}+\frac {a^2\,\sin \left (2\,c+2\,d\,x\right )}{4\,b^3\,d}+\frac {a^2\,\sin \left (4\,c+4\,d\,x\right )}{32\,b^3\,d}-\frac {a^4\,\sin \left (2\,c+2\,d\,x\right )}{4\,b^5\,d}+\frac {a\,\cos \left (c+d\,x\right )}{8\,b^2\,d}-\frac {2\,a^3\,\mathrm {atanh}\left (\frac {2\,b^2\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {-a^6+3\,a^4\,b^2-3\,a^2\,b^4+b^6}-a^2\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {-a^6+3\,a^4\,b^2-3\,a^2\,b^4+b^6}+a\,b\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {-a^6+3\,a^4\,b^2-3\,a^2\,b^4+b^6}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a^5+2\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a^4\,b-2\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a^3\,b^2-4\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a^2\,b^3+\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a\,b^4+2\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,b^5}\right )\,\sqrt {-a^6+3\,a^4\,b^2-3\,a^2\,b^4+b^6}}{b^7\,d} \]

input
int((cos(c + d*x)^4*sin(c + d*x)^3)/(a + b*sin(c + d*x)),x)
 
output
atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2))/(8*b*d) + sin(2*c + 2*d*x)/(64 
*b*d) - sin(4*c + 4*d*x)/(64*b*d) - sin(6*c + 6*d*x)/(192*b*d) + (a*cos(3* 
c + 3*d*x))/(16*b^2*d) + (a*cos(5*c + 5*d*x))/(80*b^2*d) - (5*a^3*cos(c + 
d*x))/(4*b^4*d) + (a^5*cos(c + d*x))/(b^6*d) + (3*a^2*atan(sin(c/2 + (d*x) 
/2)/cos(c/2 + (d*x)/2)))/(4*b^3*d) - (3*a^4*atan(sin(c/2 + (d*x)/2)/cos(c/ 
2 + (d*x)/2)))/(b^5*d) + (2*a^6*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2) 
))/(b^7*d) - (a^3*cos(3*c + 3*d*x))/(12*b^4*d) + (a^2*sin(2*c + 2*d*x))/(4 
*b^3*d) + (a^2*sin(4*c + 4*d*x))/(32*b^3*d) - (a^4*sin(2*c + 2*d*x))/(4*b^ 
5*d) + (a*cos(c + d*x))/(8*b^2*d) - (2*a^3*atanh((2*b^2*sin(c/2 + (d*x)/2) 
*(b^6 - a^6 - 3*a^2*b^4 + 3*a^4*b^2)^(1/2) - a^2*sin(c/2 + (d*x)/2)*(b^6 - 
 a^6 - 3*a^2*b^4 + 3*a^4*b^2)^(1/2) + a*b*cos(c/2 + (d*x)/2)*(b^6 - a^6 - 
3*a^2*b^4 + 3*a^4*b^2)^(1/2))/(a^5*cos(c/2 + (d*x)/2) + 2*b^5*sin(c/2 + (d 
*x)/2) + a*b^4*cos(c/2 + (d*x)/2) + 2*a^4*b*sin(c/2 + (d*x)/2) - 2*a^3*b^2 
*cos(c/2 + (d*x)/2) - 4*a^2*b^3*sin(c/2 + (d*x)/2)))*(b^6 - a^6 - 3*a^2*b^ 
4 + 3*a^4*b^2)^(1/2))/(b^7*d)